[bookmark: _GoBack]CSSE 575 – Software Maintenance and Evolution
RHIT
Take-home exam 2.
Due 11:55 PM – Thurs, Feb 27, 2014, on Moodle

A. Instructions

The exam covers material from the second half of the course, after Exam 1.

10 questions, 10 points each, just like Exam 1.

Please take 3-4 hours for this exam – honor system. It’s open book. (And you can look things up on the Internet, etc., if you like!) I’m looking for maybe 2 pages typed, single spaced, in addition to the length of the questions and probably a bit more for the coding examples or other artifacts in the second part! Add your answer by typing under each question.

On each question, put some depth. I hope to see a representation of your own thinking, like applications of the ideas, beyond what’s in the book.

B. Questions - Short Answer (typically 3 - 4 sentences)

1. Week 5 – Reverse engineering: You need to rewrite your flagship system! When you work your way to the top of the horseshoe model, you ought to have something to look at – architecture and requirements of the system that’s already built. But anyone insisting on keeping these documents up-to-date is likely to get fired, for standing in the way of progress on the next paid-for enhancement. How do you avoid this “death by profitability” scenario?

2. Week 6 – Feathers’ seam model – using the model: Feathers claims that a place in your code which prevents unit testing is also the most likely place where you will need to change the code. Huh! Why is that?

3. Week 6 – Feathers’ seam model – problems changing software: Feathers’ way of studying change impacts involves drawing “effect sketches.” He says that, “If your code is well structured, most of the methods in your software have simple effect structures. In fact, one measure of goodness in software is that rather complicated effects on the outside world are the sum of a much simpler set of effects in the code.” Is there a type of coding situation where this advice would not apply? If so, what is it? If not, why not?

4. Week 6 – Feathers’ seam model – dependencies: Feathers strongly recommends that you systematically break dependencies to a class by “replacing references to the class by references to an interface.” In what ways is this useful and efficient for testing?

5. Week 7 – Theory of maintenance and modeling: One of Jarzabek’s targets, in inventing a maintenance language to accompany the coding, is to reduce the amount of repetitive coding, which “tends to be implicit and dispersed in the code.” Toward this end, he recommends some generic and adaptable way of expressing concepts you are about to put into your code, before writing it. This way, one could check to see if such code already exists. If you did not want to invent a whole language toward this end, like Jarzabek did, perhaps there are still ways you could detect the previous existence of code like what you were about to write over again. Describe some trick or practice that would make this possible, if it were used consistently!

6. Week 8 – Making products economically evolvable: D’Ambros, et al, claim that improving maintenance practices requires being able to mine 3 repositories: the source code (and all its versions), the defect tracking system, and the archived communications between people working on the project. Describe a problem that would require knowledge in all 3 places, for you to understand the problem and how to fix it:

7. Week 9 – Problems with evolution: How to beat Lehman’s Laws! Let’s pick on his Law # 5, the “familiarity of all involved” with the goals of each task. Lehman says, “The larger the work package the more challenging mastery of the matter to be acquired.” So, average incremental growth remains invariant. Invent and describe a tactic that would try to overcome this problem, as a system grows:

8. Week 9 – Statistical modeling: Ramesh and Bhattiprolu say that the best ways to measure the effectiveness and efficiency, of the software process, are those where data is collected automatically. But what about analysis and control of that data? These also take time. What kinds of data about software development could be measured, and corrections made to out of bounds conditions, with the least amount of extra effort?

9. Week 10 – Measuring maintainability: Adaptive software maintenance can be an attractive option, potentially multiplying your market. If our stuff runs on iPhones and Androids, as well as on the Web, we could have a much bigger market slice. But, how do you keep each such branch from multiplying the maintenance work?

10. Week 10 – Maintenance management: Why exactly does having a “service level agreement” promote customer satisfaction? Does it also promote having a more suitable level of staffing in the maintenance organization? Why?

C. Questions - Problem Solving (include figures and explain them in a few sentences)

11. Reifer’s contentions: Donald J. Reifer claims that half of the ongoing costs of a successful system are in the customer-facing support network, not in the development side. And, he claims that half the costs in the development side are in testing. As a designer / coder, you’re left with trying to optimize 25% of the costs! Or are you? List 3 things that you could do in design and coding which would make the customer-facing support activities more efficient over the life of the product. And list 3 things that you could do that would make testing more efficient. Write a sentence justifying why each of the items in these lists is a high-priority:

12. Feathers and testing: In Ch 22 Feathers describes how to test “monster classes.” Even understanding what to test can be difficult, because such classes can have complex and subtle effects on the data they manipulate. Feathers recommends adding temporary, “sensing” variables as a way to understand these effects. Find an example of your own code where this trick would be advantageous, and explain how adding a “sensing” variable would be useful in analyzing what the class does:

Put your .doc file in the Moodle drop box provided by 11:55 PM, Thursday, Feb 27. (I may use Word’s change mode to comment and grade it.)

		Page 1 of 3
